Arrhythmogenesis Toxicity of Aconitine Is Related to Intracellular Ca2+ Signals

نویسندگان

  • Yu-hong Zhou
  • Xian-mei Piao
  • Xue Liu
  • Hai-hai Liang
  • Lei-min Wang
  • Xue-hui Xiong
  • Lu Wang
  • Yan-jie Lu
  • Hong-li Shan
چکیده

Aconitine is a well-known arrhythmogenic toxin and induces triggered activities through cardiac voltage-gated Na(+) channels. However, the effects of aconitine on intracellular Ca(2+) signals were previously unknown. We investigated the effects of aconitine on intracellular Ca(2+) signals in rat ventricular myocytes and explored the possible mechanism of arrhythmogenic toxicity induced by aconitine. Ca(2+) signals were evaluated by measuring L-type Ca(2+) currents, caffeine-induced Ca(2+) release and the expression of NCX and SERCA2a. Action potential and triggered activities were recorded by whole-cell patch-clamp techniques. In rat ventricular myocytes, the action potential duration was significantly prolonged by 1 µM aconitine. At higher concentrations (5 µM and 10 µM), aconitine induced triggered activities and delayed after-depolarizations (6 of 8 cases), which were inhibited by verapamil. Aconitine (1 µM) significantly increased the ICa-L density from 12.77 ± 3.12 pA/pF to 18.98 ± 3.89 pA/pF (n=10, p<0.01). The activation curve was shifted towards more negative potential, while the inactivation curve was shifted towards more positive potential by 1 μM aconitine. The level of Ca(2+) release induced by 10 mM caffeine was markedly increased. Aconitine (1 µM) increased the expression of NCX, while SERCA2a expression was reduced. In conclusion, aconitine increased the cytosolic [Ca(2+)]i by accelerating ICa-L and changing the expression of NCX and SERCA2a. Then, the elevation of cytosolic [Ca(2+)]i induced triggered activities and delayed after-depolarizations. Arrhythmogenesis toxicity of aconitine is related to intracellular Ca(2+) signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells

Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...

متن کامل

Reducing Toxicity and Increasing Efficiency: Aconitine with Liquiritin and Glycyrrhetinic Acid Regulate Calcium Regulatory Proteins in Rat Myocardial Cell

BACKGROUND Compatibility of Radix Aconiti Carmichaeli and Liquorice is known to treat heart diseases such as heart failure and cardiac arrhythmias. This work answers the question that whether the active components (Aconitine, Liquiritin and Glycyrrhetinic Acid) of Radix Aconiti Carmichaeli and Liquorice could result in regulating intracellular calcium homeostasis and calcium cycling, and thereb...

متن کامل

Role of the Alternans of Action Potential Duration and Aconitine-Induced Arrhythmias in Isolated Rabbit Hearts

Under conditions of Na(+) channel hyperactivation with aconitine, the changes in action potential duration (APD) and the restitution characteristics have not been well defined in the context of aconitine-induced arrhythmogenesis. Optical mapping of voltage using RH237 was performed with eight extracted rabbit hearts that were perfused using the Langendorff system. The characteristics of APD res...

متن کامل

Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers.

Increasing evidence suggests that amyloid peptides associated with a variety of degenerative diseases induce neurotoxicity in their intermediate oligomeric state, rather than as monomers or fibrils. To test this hypothesis and investigate the possible involvement of Ca2+ signaling disruptions in amyloid-induced cytotoxicity, we made homogeneous preparations of disease-related amyloids (Abeta, p...

متن کامل

P30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain

Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2013